Numerical integration in the Brillouin zone

Antoine Levitt

Inria Paris & CERMICS, ENPC First part with É Cancès, V. Ehrlacher, D. Gontier, D. Lombardi, Numerische, 2019 Second part with I. Duchemin, L. Genovese, E. Letournel, S. Ruget, preprint 2022

June 21 2022, Lausanne

Supercells and thermodynamic limits

2 Insulators

4 Smearing

Brillouin zone sampling

Consider non-interacting electrons in a perfectly periodic Hamiltonian $H = -\frac{1}{2}\Delta + V$ with lattice \mathcal{R} , and a $L \times L \times L$ supercell

• Because of periodicity, eigenstates can be searched as Bloch waves

$$\psi_k(r) = e^{ik \cdot r} u_k(r)$$

where u_k is cell-periodic and k is in the discrete Brillouin zone

$$\mathcal{B}_L = \left\{\sum_{i=1}^3 k_i a_i^*, k_i \in \left\{0, \ldots, \frac{L-1}{L}\right\}\right\}$$

Yields eigenstates

$$H\psi_{nk} = \varepsilon_{nk}\psi_{nk}$$

Electrons in a supercell

Occupied states are those for which $\varepsilon_{nk} \leq \varepsilon_F$, where

$$L^3 N_{\mathrm{el}} = \sum_{k \in \mathcal{B}_L, n \in \mathbb{N}} \mathbb{1}(\varepsilon_{nk} \le \varepsilon_F)$$

with total energy

$$L^{3}E^{L} = \sum_{k \in \mathcal{B}_{L}, n \in \mathbb{N}} \varepsilon_{nk} \mathbb{1}(\varepsilon_{nk} \leq \varepsilon_{F})$$

When $L \to \infty$:

$$\lim_{L \to \infty} E^{L} = \int_{\mathcal{B}} \sum_{n \in \mathbb{N}} \varepsilon_{nk} \mathbb{1}(\varepsilon_{nk} \le \varepsilon_{F}) dk$$

where $N_{\text{el}} = \int_{\mathcal{B}} \sum_{n \in \mathbb{N}} \mathbb{1}(\varepsilon_{nk} \le \varepsilon_{F}) dk$

What is the speed of convergence with respect to *L*? Can it be improved?

Major practical issue (second source of errors after pseudopotentials)

Band structure

Supercells and thermodynamic limits

Insulators

4 Smearing

Numerical analysis: the case of insulators

• In a gapped system (insulator, semiconductor),

$$\inf_{\mathbf{k}\in\mathcal{B}}\varepsilon_{N_{\mathrm{el}}+1,\mathbf{k}}-\sup_{\mathbf{k}\in\mathcal{B}}\varepsilon_{N_{\mathrm{el}}\mathbf{k}}\geq g>0,$$

and so there are exactly $N_{\rm el}$ bands filled at each **k**:

$$E = \sum_{n} \int_{\mathcal{B}} \varepsilon_{n\mathbf{k}} \mathbb{1}(\varepsilon_{n\mathbf{k}} \le \varepsilon_{F}) d\mathbf{k} = \int_{\mathcal{B}} \sum_{n=1}^{N_{el}} \varepsilon_{n\mathbf{k}} d\mathbf{k}$$
$$E^{L} = \frac{1}{L^{3}} \sum_{n=1}^{N_{el}} \sum_{\mathbf{k} \in \mathcal{B}_{I}} \varepsilon_{n\mathbf{k}} d\mathbf{k}$$

Theorem (Gontier-Lahbabi '16)

Under suitable hypotheses on V_{per} , there is $\alpha > 0, C > 0$ such that

$$|E - E^L| \leq C e^{-\alpha L}$$

Ideas of the proof: Riemann sums of periodic functions

• For a periodic f, what is the error made by

$$\int_{0}^{2\pi} f(x) dx \approx \frac{2\pi}{L} \sum_{k=0}^{L-1} f(2\pi k/L)$$

- Usual estimates (Taylor): O(1/L)
- But large error cancellation: quadrature exact for e^{inx} , |n| < L

(Ideas of the proof: exponential convergence)

Theorem (Classical: Trefethen-Weideman '14, Gontier-Lahbabi '16)

- If f is periodic and smooth, then the integration error is O(L^{-p}) for all p
- If f is complex analytic on the strip ℝ + [-A, A]i, then the integration error is O(e^{-βAL}), β a universal constant.

(proof: regularity \iff decay of Fourier coefficients)

$$\mathsf{E}=\int_{\mathcal{B}}\sum_{n=1}^{N_{\mathrm{el}}}arepsilon_{n\mathbf{k}}d\mathbf{k}$$

- In general, ε_{nk} is smooth (and even complex analytic on a strip) outside *eigenvalue crossings* ε_{n,k} = ε_{n',k}
- But sums of eigenvalues are smooth when $\varepsilon_{N_{\rm el},\mathbf{k}} < \varepsilon_{N_{\rm el}+1,\mathbf{k}}$

$$E = \int_{\mathcal{B}} \operatorname{Tr}(P_{N_{el}}(H_{\mathbf{k}})H_{\mathbf{k}})d\mathbf{k}, \quad P_{N_{el}}(H_{\mathbf{k}}) = \frac{1}{2\pi i} \oint_{\mathcal{C}} (\lambda - H_{\mathbf{k}})^{-1} d\lambda$$

Supercells and thermodynamic limits

2 Insulators

4 Smearing

Metals and Fermi surface

In metals, there is no gap

$$E = \sum_{n} \int_{\mathcal{B}} \varepsilon_{n\mathbf{k}} \mathbb{1}(\varepsilon_{n\mathbf{k}} \leq \varepsilon_{F}) d\mathbf{k}, \quad N_{\text{el}} = \sum_{n} \int_{\mathcal{B}} \mathbb{1}(\varepsilon_{n\mathbf{k}} \leq \varepsilon_{F}) d\mathbf{k}$$

Key concept: Fermi surface

$$S(\varepsilon_F) = \cup_n S_n(\varepsilon_F), \quad S_n(\varepsilon_F) = \{\mathbf{k} \in \mathcal{B}, \varepsilon_{n\mathbf{k}} = \varepsilon_F\}.$$

Periodic table of Fermi surfaces http://www.phys.ufl.edu/fermisurface/periodic_table.html

$$S(\varepsilon_F) = \bigcup_n S_n(\varepsilon_F), \quad S_n(\varepsilon_F) = \{\mathbf{k} \in \mathcal{B}, \varepsilon_{n\mathbf{k}} = \varepsilon_F\}.$$

Assumptions

$$(\mathbf{s}_{F}) \neq \emptyset$$
 (metal)

$$\ \, {\it O} \ \, S_n(\varepsilon_F)\cap S_{n'}(\varepsilon_F)=\emptyset \ \, ({\it no\ crossing\ on\ Fermi \ surface})$$

9
$$\nabla \varepsilon_{n,\mathbf{k}} \neq 0$$
 on $S_n(\varepsilon_F)$ (no flat bands)

- Excludes semi-metals (graphene) and highly symmetric systems (free electron gas)
- No crossing: ε_{nk} is smooth on a neighborhood of $S_n(\varepsilon_F)$
- No flat bands: $S = \bigcup_n \varepsilon_{nk}^{-1}(\{\varepsilon_F\})$ is a smooth surface

Density of states

Theorem (Co-area formula, integration over level sets)

If $\mathbf{k}
ightarrow f(\mathbf{k})/|
abla E(\mathbf{k})|$ is L^1 ,

$$\int_{\mathcal{B}} f(\mathbf{k}) d\mathbf{k} = \int_{\mathbb{R}} \left(\int_{E^{-1}(\{\varepsilon\})} \frac{f(\mathbf{k})}{|\nabla E(k)|} d\sigma(\mathbf{k}) \right) d\varepsilon$$

Integrated density of states

$$\mathcal{N}(\varepsilon) = \sum_{n} \int_{\mathcal{B}} \mathbb{1}(\underbrace{\varepsilon_{n\mathbf{k}}}_{E(\mathbf{k})} \leq \varepsilon) d\mathbf{k}$$

"= "
$$\int_{-\infty}^{\varepsilon} \underbrace{\sum_{n} \int_{S_{n}(\varepsilon')} \frac{1}{|\nabla \varepsilon_{n\mathbf{k}}|} d\sigma(\mathbf{k})}_{\mathcal{D}(\varepsilon')} d\varepsilon'$$

 ${\mathcal N}$ is smooth near $\varepsilon_{{\it F}}$ and

$$\mathcal{D}(\varepsilon_F) = \mathcal{N}'(\varepsilon_F) > 0$$

Error analysis for interpolation

• Approximate $\varepsilon_{n\mathbf{k}}$ by an interpolated $\varepsilon_{n\mathbf{k}}^{p}$ with order p on a $L \times L \times L$ grid and integrate

$$\begin{cases} E^{L} = \sum_{n} \int_{\mathcal{B}} \varepsilon_{n\mathbf{k}}^{L,\mathbf{p}} \mathbb{1}(\varepsilon_{n\mathbf{k}}^{L,q} \leq \varepsilon_{F}^{L}) d\mathbf{k} \\ N = \sum_{n} \int_{\mathcal{B}} \mathbb{1}(\varepsilon_{n\mathbf{k}}^{L,q} \leq \varepsilon_{F}^{L}) d\mathbf{k} \end{cases}$$

- Interpolate integrand with order *p* and domain of integration with order *q*
- Most often used in practice: p = 2, q = 1 (Blochl's corrections \approx higher-dimensional Euler-MacLaurin)

Theorem

There is C > 0 such that

$$|\varepsilon_F^L - \varepsilon_F| \le \frac{C}{L^{q+1}}$$

Error analysis for interpolation

• Approximate $\varepsilon_{n\mathbf{k}}$ by an interpolated $\varepsilon_{n\mathbf{k}}^{p}$ with order p on a $L \times L \times L$ grid and integrate

$$\begin{cases} E^{L} = \sum_{n} \int_{\mathcal{B}} \varepsilon_{n\mathbf{k}}^{L,\mathbf{p}} \mathbb{1}(\varepsilon_{n\mathbf{k}}^{L,q} \leq \varepsilon_{F}^{L}) d\mathbf{k} \\ N = \sum_{n} \int_{\mathcal{B}} \mathbb{1}(\varepsilon_{n\mathbf{k}}^{L,q} \leq \varepsilon_{F}^{L}) d\mathbf{k} \end{cases}$$

- Interpolate integrand with order *p* and domain of integration with order *q*
- Most often used in practice: p = 2, q = 1 (Blochl's corrections \approx higher-dimensional Euler-MacLaurin)

Theorem

There is C > 0 such that

$$\begin{split} |\varepsilon_F^L - \varepsilon_F| &\leq \frac{C}{L^{q+1}} \\ |E^L - E| &\leq C \left(\frac{1}{L^{p+1}} + \frac{1}{L^{2q+2}} \right) \end{split}$$

(Ideas of the proof: error on the Fermi level)

Approximate integrated density of states

$$\mathcal{N}^{L}(\varepsilon) = \sum_{n} \int_{\mathcal{B}} \mathbb{1}(\varepsilon_{n\mathbf{k}}^{L,q} \leq \varepsilon) d\mathbf{k}$$

 ε_F^L is defined by $\mathcal{N}^L(\varepsilon_F^L) = N_{\mathrm{el}} = \mathcal{N}(\varepsilon_F)$. $\varepsilon_{n\mathbf{k}}$ is smooth near ε_F , so \mathcal{N}^L and \mathcal{N} are $O(L^{q+1})$ -close near ε_F . From $\mathcal{N}'(\varepsilon_F) = \mathcal{D}(\varepsilon_F) > 0$, it follows that

$$|\varepsilon_F^L - \varepsilon_F| \le rac{C}{L^{q+1}}$$

For the energy:

$$E^{L} - E = \underbrace{\sum_{n} \int_{\mathcal{B}} (\varepsilon_{n\mathbf{k}}^{L,p} - \varepsilon_{n\mathbf{k}}) \mathbb{1}(\varepsilon_{n\mathbf{k}}^{L,q} \le \varepsilon_{F}^{L}) d\mathbf{k}}_{bulk,O(L^{-(p+1)})} + \underbrace{\sum_{n} \int_{\mathcal{B}} \varepsilon_{n\mathbf{k}}(\mathbb{1}(\varepsilon_{n\mathbf{k}}^{L,q} \le \varepsilon_{F}^{L}) - \mathbb{1}(\varepsilon_{n\mathbf{k}} \le \varepsilon_{F})) d\mathbf{k}}_{surface,O(L^{-(q+1)})}$$

(Ideas of the proof: error on the energy)

surface error =
$$\sum_{n} \int_{\mathcal{B}} \varepsilon_{n\mathbf{k}} (\mathbb{1}(\varepsilon_{n\mathbf{k}}^{L,q} \leq \varepsilon_{F}^{L}) - \mathbb{1}(\varepsilon_{n\mathbf{k}} \leq \varepsilon_{F})) d\mathbf{k}$$

Naively, this is controled by the size of the integration domain so $O(L^{-(q+1)})$, but

surface error
$$= \sum_{n} \int_{\mathcal{B}} (\varepsilon_{n\mathbf{k}} - \varepsilon_{F}) (\mathbb{1}(\varepsilon_{n\mathbf{k}}^{L,q} \le \varepsilon_{F}^{L}) - \mathbb{1}(\varepsilon_{n\mathbf{k}} \le \varepsilon_{F})) d\mathbf{k}$$
$$+ \underbrace{\varepsilon_{F}(\mathcal{N}^{L}(\varepsilon_{F}^{L,q}) - \mathcal{N}(\varepsilon_{F}))}_{=0}$$
$$= O(L^{-(2q+2)})$$

This trick is special for the energy ("the energy is variational in the Fermi surface"), only $O(L^{-(q+1)})$ for other quantities (Fermi level, density...)

Supercells and thermodynamic limits

2 Insulators

Smearing

- f(x) is an approximation of Heaviside(-x)
- T is a regularization parameter (physically, a temperature)
- The integrand is now smooth, and therefore efficiently computed by Riemann sums: $E^{T,L}$
- Two sources of errors:

$$|E^{T,L} - E| \leq \underbrace{|E^{T} - E|}_{smearing \ error} + \underbrace{|E^{T,L} - E^{T}|}_{quadrature \ error}$$

Smearing error

A smearing function is of order p if

$$\int_{-\infty}^{+\infty} (f(\varepsilon) - \mathbb{1}(\varepsilon < 0)) P(\varepsilon) d\varepsilon = 0$$

for any polynomial P of degree p - 1.

Several choices in the literature: Fermi-Dirac, Gaussian smearing (order 1), Methfessel-Paxton (higher order)...

Theorem

If f has decaying tails and is of order p, there is C > 0 such that

$$\begin{aligned} |\varepsilon_F^T - \varepsilon_F| &\leq CT^{p+1} \\ |E^T - E| &\leq CT^{p+1} \end{aligned}$$

(Ideas of the proof)

Formally, using the co-area formula,

$$\mathcal{N}^{\mathsf{T}}(\varepsilon) = \sum_{n} \int_{\mathcal{B}} f\left(\frac{\varepsilon_{n\mathbf{k}} - \varepsilon}{T}\right) d\mathbf{k} = \int_{\mathbb{R}} f\left(\frac{\varepsilon' - \varepsilon}{T}\right) \mathcal{D}(\varepsilon') d\varepsilon'$$
$$= T \int_{\mathbb{R}} f(x) \mathcal{D}(\varepsilon + Tx) dx$$

f has decaying tails, so D is evaluated T-close to ε , around which D can be expanded into Taylor series, and therefore

$$\mathcal{N}^{T}(\varepsilon) - \mathcal{N}(\varepsilon) = T \int_{\mathbb{R}} (f(x) - \mathbb{1}(x \le 0)) \mathcal{D}(\varepsilon + Tx) dx$$
$$= T \sum_{n=0}^{p-1} \frac{T^{n}}{n!} \mathcal{D}^{(n)}(\varepsilon) \underbrace{\int_{\mathbb{R}} (f(x) - \mathbb{1}(x \le 0)) x^{n} dx}_{=0} + O(T^{p+1})$$

Similarly,

$$\sum_{n} \int_{\mathcal{B}} \varepsilon_{n\mathbf{k}} f\left(\frac{\varepsilon_{n\mathbf{k}} - \varepsilon}{T}\right) d\mathbf{k} = \int_{\mathbb{R}} \varepsilon' f\left(\frac{\varepsilon' - \varepsilon}{T}\right) \mathcal{D}(\varepsilon') d\varepsilon'$$

$$E^{T} = \sum_{n} \int_{\mathcal{B}} \varepsilon_{n\mathbf{k}} f\left(\frac{\varepsilon_{n\mathbf{k}} - \varepsilon_{F}^{T}}{T}\right) d\mathbf{k}, \quad N = \sum_{n} \int_{\mathcal{B}} f\left(\frac{\varepsilon_{n\mathbf{k}} - \varepsilon_{F}^{T}}{T}\right) d\mathbf{k}$$

• Integrand smooth, approximate by Riemann sums $E^{T,L}, \varepsilon^{T,L}$

Theorem (Classical: Trefethen-Weideman '14, Gontier-Lahbabi '16)

If g is complex analytic on a strip $S_A = \mathbb{R}^3 + i[-A, A]$, then the error between its integral and Riemann sum is bounded by

$$C\left(\sup_{\mathbf{z}\in S_A}g(\mathbf{z})\right)e^{-cAL}$$

Find an analytic continuation of

$$g(\mathbf{k}) = \sum_{n} \varepsilon_{n\mathbf{k}} f\left(\frac{\varepsilon_{n\mathbf{k}} - \varepsilon_{F}}{T}\right)$$

Fermi-Dirac f(x) = (1 + e^x)⁻¹ analytic on a strip (poles at (2Z + 1)πi)
 Gaussian f(x) = erfc(x)/2 entire

(Analytic properties of the integrand)

But $(\lambda - H_z)^{-1}$ is not trace-class $(\varepsilon_{n\mathbf{k}} \approx n^{2/d})$... finally

$$g(\mathbf{z}) = \oint_{C} \lambda(\lambda + \Sigma) f((\lambda - \varepsilon_{F})/T) \operatorname{Tr} \left[(\lambda - H_{\mathbf{z}})^{-1} (\Sigma + H_{\mathbf{z}})^{-1} \right] d\lambda$$

is an analytical continuation of $g(\mathbf{k}) = \sum_{n} \varepsilon_{n\mathbf{k}} f\left(\frac{\varepsilon_{n\mathbf{k}} - \varepsilon_F}{T}\right)$

Theorem

The integrand is complex analytic in \mathbf{k} , on a strip of size O(T) (Fermi-Dirac smearing), and on the whole complex plane (Gaussian-type smearing).

There is C(T), c(T) such that

$$|E^{T,L} - E^{T}| \le C(T)e^{-c(T)L^{\beta}}$$
$$|\varepsilon_{F}^{T,L} - \varepsilon_{F}^{T}| \le C(T)e^{-c(T)L^{\beta}}$$

with $\beta = 1$ (Fermi-Dirac) or $\beta = 4/3$ (Gaussian-type)

Total error similar in spirit to

$$|E-E^{T,L}| \leq C(\underbrace{T^{p+1}}_{E-E^{T}} + \underbrace{e^{-cTL}}_{E^{T}-E^{T,L}}).$$

For a given L, pick T = 1/L to obtain error $C(L^{-(p+1)})$ (up to log factors)

Conclusion: metals

- For interpolation, order as expected, but bonus order for the energy
- For smearing, optimization of T as a function of L
- Prove rigorously some results known heuristically in the physical literature, plus
 - Importance of hypotheses (generically true but violated in some symmetry-protected systems like graphene)
 - **②** Convergence like $Ce^{-cL^{4/3}}$ for Gaussian-type smearing (!)
 - Optimal choice of T
- Possibly better schemes: Wannier functions, reduced basis (Shirley), adaptive grids...
- Open problems: systems with symmetries, non-smooth Fermi surfaces (e.g. graphene)

Supercells and thermodynamic limits

2 Insulators

4 Smearing

DOS

Consider now the problem of computing the density of states

$$D(E) = \int_{\mathcal{B}} \sum_{n \in \mathbb{N}} \delta(\varepsilon_{nk} - E) dk$$

= $\lim_{\eta \to 0^+} \frac{1}{\pi} \operatorname{Im} \int_{\mathcal{B}} \sum_{n \in \mathbb{N}} \frac{1}{\varepsilon_{nk} - E + i\eta} dk$
and more generally of
$$G(E) = \lim_{\eta \to 0^+} \frac{1}{H - E + i\eta}$$

(useful for many electronic properties)

Solutions as before: interpolation or regularization, but gives non-analytic $D(E) \Rightarrow$ problem for resonances

A simpler problem: contour deformation to the rescue

Compute the analytic continuation of

$$l_1(z) = \int_{\mathbb{R}} rac{\phi(arepsilon)}{z-arepsilon} darepsilon \qquad ext{from Im}(z) > 0 ext{ to Im}(z) < 0$$

• When $z = E + i\eta$, $\eta > 0$,

$$\frac{\phi(\varepsilon)}{z-\varepsilon} = \phi(\varepsilon) \frac{E-\varepsilon+i\eta}{(E-\varepsilon)^2+\eta^2}$$

Bump of height $1/\eta$, width η around $\varepsilon = E$

- Numerical integration needs $N \gg \frac{1}{n}$ quadrature points
- Continuation past $\eta = 0$ impossible once discretized

Solution: contour deformation

A more complicated problem

Compute the analytic continuation of

$$I_2(z) = \int_{\mathbb{R}} rac{\phi(k)}{z - arepsilon(k)} dk$$
 from $\mathrm{Im}(z) > 0$ to $\mathrm{Im}(z) < 0$

Eg if $\varepsilon(k)=k^2$, singularities near the Fermi surface $k=\pm\sqrt{E}$

• More generally, at $z = E + i\eta$, if k_0 is a point of the Fermi surface $\varepsilon(k_0) = E$, singularity at

$$k = k_0 + \frac{i\eta}{\varepsilon'(k_0)} + O(\eta^2)$$

 Need ε' ≠ 0, no continuation possible otherwise (van Hove singularity, zero group velocity)

One band, multiple dimensions: Brillouin zone deformation

Lemma

Let A(k) be a $(2\pi)^d$ – periodic function, analytic in an open set $U = \mathbb{R}^d + i[-\eta, \eta]^d$. Then, for all periodic and smooth functions $k_i(k) : \mathbb{R}^d \to [-\eta, \eta]^d$, we have

$$\int_{[-\pi,\pi]^d} A(k) dk = \int_{[-\pi,\pi]^d} A(k+ik_i(k)) \det(1+ik_i'(k)) dk$$

Proof:

$$I(\alpha) = \int_{[0,2\pi]^d} A(k + \alpha k_i(k)) \det(1 + \alpha k'_i(k)) dk,$$

is analytic and constant in $\alpha \in [-1,1] \Rightarrow I(i) = I(0)$.

Take k_i such that $k + ik_i(k)$ avoids the Fermi surface:

$$k_i = -\alpha \nabla \varepsilon(k) \chi(\varepsilon(k) - E)$$

where χ is a cutoff function and *E* the energy of interest.

The full problem

$$G_0(r,r';z) = \int_{\mathrm{BZ}} \sum_{n=1}^{\infty} \frac{e^{ik(r-r')} u_{nk}(r) \overline{u_{nk}(r')}}{z - \varepsilon_{nk}} dk$$

deformed with $k \rightarrow k + ik_i(k)$ with

$$k_i(k) = -\alpha \sum_n \chi(\varepsilon_{nk} - E) \nabla \varepsilon_{nk}$$

where χ is a cutoff function and E the energy of interest.

Can continue numerically near *E* if there are no van Hove singularities (crossing or bands with zero gradient at the "Fermi surface" $\{k, \varepsilon_{nk} = E\}$)

• Only requires unit cell computations

- Exponential convergence wrt Brillouin zone sampling
- Natural generalization of complex scaling to periodic systems: when $H_0 = -\frac{1}{2}\Delta$, $\nabla \varepsilon(k) = k$, compare with complex scaling $k \to e^{-i\alpha}k$

Example: 1D diatomic chain

Top to bottom: periodic Green functions with (a) no deformation, (b) deformation at fixed E = 2, (c) deformation at E = Re(z).

Example: tight-binding model of graphene

- Consider a local impurity: $H = H_0 + V$
- Resonances are poles of the analytic continuation of matrix elements of G(z) = 1/(z H) from Im(z) > 0 to Im(z) < 0
- Can use resolvent/Dyson formula:

$$G(z) = G_0(z)(1 - VG_0(z))^{-1}$$

• Need to compute analytic continuation of $G_0(z) \Rightarrow$ contour deformation

Example: adatom on 2D surface

 H_0 : graphene sheet + isolated adatom. V: graphene-adatom coupling

Example: adatom on 2D surface

Methodology

- Avoid expensive sums over eigenstates (Sternheimer formalism \Rightarrow only iterative preconditioned eigen/linear problems)
- Find poles efficiently (nonlinear eigenvalue problem)
- Extend to TDDFT
- Implement in DFT codes

Applications

- Include resonant states in basis set expansions?
- Materials science: conductivity?
- General scattering problems?